1- Las figuras , , , y consisten de , , , y cuadrados unitarios, respectivamente. Si continuamos el patrón, cuantos cuadrados unitarios tendrá la figura 100?
2- Un tablero de renglones y columnas tiene un numero escrito en cada cuadrado, empezando en la esquina superior izquierda, de tal forma que el primer renglon es , el segundo , y asi para abajo. Si el tablero es renumerado tal que la columna de la izquierda es (de arriba a abajo) , la segunda columna y así sucesivamente. Algunos cuadrados tienen los mismos números en ambos casos. Encuentra la suma de estos números.
4- A través de un punto en la hipotenusa de un triangulo rectangulo, se trazan lineas paralelas a los catetos del triangulo de tal forma que el triangulo queda dividido en un cuadrado y 2 triangulos rectangulos mas chicos. El area de uno de los triangulos chicos es veces el area del cuadrado. Cual es la razon entre el area del otro triangulo chico y el area del cuadrado.
5- Si los arcos circulares y tienen centros en y , respectivamente, entonces existe un circulo tangente a ambos y , y a . Si la longitud de es , entonces el perimetro del circulo es:
6- Ocho triángulos equilateros congruentes, cada uno de diferente color, son usados para construir un octaedro regular. Cuantas maneras distintas hay de construir el octaedro? (Dos octaedros coloreados se consideran distintos si ninguno de los 2 puede ser rotado para lucir como el otro.)
7- El producto de 3 enteros positivos consecutivos es 8 veces su suma. Cual es la suma de sus cuadrados?
8- Cuantos enteros diferentes pueden ser expresados como la suma de 3 números distintos del conjunto ?
10- La suma de enteros positivos consecutivos es un cuadrado perfecto. Cual es el valor mas pequeño posible de esta suma?
11- Cuatro circulos distintos se dibujan en un plano. Cual es el máximo numero de puntos donde al menos 2 de los círculos se intersectan?
14- Un cuadrilátero convexo con área contiene un punto en su interior tal que . Encontrar el perímetro de .
83 comentarios:
p1. 203
p1. 199^2 +4
p1. 100¨2+101¨2
1. 19901
Problema 7. $77$
p1 200(101)+1
p6-168
1. 20201
error p6.-42
p13. 448
7. 77
9.- 4
7- 77
p.7 77
prob 7: 77
error de nuevop6- 840
10. 225
9. 4
11. 12
4: El triangulo es 1/4m veces el cuadrado
prob 9: 2
Problema 12. $720$
p10 225
10. 225
Problema 3. $1$
p 13- 8
error, era al reves p8- 13
4- 1/4m
prob 15: x y y son naturales o que?
4.- 1/(4m)
p13 baja 10*11+13*12+14*13
11.- 12
10. 289
2. 13( 1 + 18*6)
10.- 225
1. 20201
prob 12:720
p2. 555
8- 13
prob 10: 4
P12 baja raiz cuadrada de 72*90*80
prob 7: 77
p8 baja 1
P11 baja 12
11: 12
3. 1
prob 13: 25
prob 13: 448
13. 14^2 + 13^2 + 10*11
Problema 13. $35$
4)
1/4m
13. 448
14: 186.520583
Problema 13. $448$
Jose A. No se pueden eliminar comentarios
8) 840
P10 baja 171+18*3
problema 5 --> 6
8. 13
2.- 555
p13. 13*14+12*13+10*11
perdon, 8) 35
2. 334
problema 5 ---> perdón el perimetro es 2*pi* raíz de 6 sobre pi
problema 5- 18 entre pi
TIEMPO EXTRA, 5 minutos mas !!!!!
Se acaba a las 10:15PM
error,p5 36
Problema 5. $27$
p2. 5
prob 5: 27
prob 15:4
3: 1
TIEMPO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
p2. 555
Comentario para el record, Juan dice tener el problema 7: 77, antes que Adan (me dijo por Facebook, que el blog no lo dejaba postear)
vale eso :( ?
D:
Pues no hay manera de saber que lo tenia antes que tu Adán, en todo caso se los valgo a los 2.
Ni modo que le empezara a decir y que esperara a que alguien posteara ese problema para decirle cual era mi respuesta. Le empezé a decir antes y luego vi que Adán me la ganó y le dije. Dice que la configuración estaba mal o algo.
Para todos:
En el blog tienen que meterse con su cuenta de colaborador, para que solo ustedes puedan postear y ninguna otra persona no IMO.
Publicar un comentario