viernes, 21 de mayo de 2010
Problema del día: Mayo-21-10 (Álgebra)
Demostrar que no podemos partir los enteros positivos en 3 partes no vacías, de tal forma que si a y b pertenecen a partes diferentes, entonces a2 - ab + b2 pertenece a la tercera de las partes.
Suscribirse a:
Comentarios de la entrada (Atom)
9 comentarios:
Disculpa pero no se si sea solo yo, pero no entiendo bien el problema. A que te refieres con partir los enteros positivos en tres partes no vacias? que sea la suma de tres entros postitivos?
Se refiere a que pones a los enteros en 3 conjuntos no vacios.
El problema re-escrito sería:
Demuestra que no existe una partición de los enteros positivos en 3 conjuntos no vacíos tales que si a y b perteneces a conjuntos distintos, entonces a^2 -ab + b^2 pertenece al tercer conjunto.
Como extra, partición implica que la intersección de cada dos conjuntos es vacía.
No he hecho mucho, creo que de lo que tengo lo que puede servir para resolver el problema (por contradicción) es notar que si A, B y C son los tres conjuntos de la partición entonces no existen tres números a, b y c en conjuntos distintos tales que uno de ellos sea la suma de los otros dos, porque si esto pasara, por ejemplo a=b+c, entonces f(a,b)=f(a,c), donde f(a,b)=a^2-ab+b^2
Ya lo intenté, tengo algunas ideas pero como que ninguna me está ayudando. ¿Podrían poner alguna sugerencia?
Hola Irving,
Lo que has hecho es correcto.
Piensa en los elementos mínimos de cada conjunto.
yo tambien solo he sacado que no puede haber a,b,c naturales en diferentes conjuntos, entonces uno no es la suma de los otros dos , y que 1 y 2 estan en elmismo conjunto
Si, de hecho eso estaba haciendo desde antes de publicar mi primer comentario y encontré cómo tendrían que estar distribuidos algunos de los primeros números, pero algo se me debe estar escapando, voy a intentarlo de nuevo por ahí.
Va un hint: Sea 1 b y c los elementos mas chicos de A,B y C respectivamente. Demuestra que si x esta en C entonces x+1,X+2...,x+b-1 no estan en C. Ahora toma en consideracion f(b,1)-f(b,2)=b-3 son dos elementos de C por que b esta en B y 1 y 2 en A y esto es una contradiccion para b mayor de 3.
Publicar un comentario